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BENDING OF CIRCULAR PLATES OF HARDENING MATERIAL

E. P. Porov, M. KHOJASTEH-BAKHT and S. YAGHMAI

University of California, Berkeley

Abstract—A general bending analysis of axisymmetrically loaded and supported circular plates of hardening
material is presented in this paper. This is an extension of a previous work by the authors [13] on the analysis
of elastic—plastic circular plates. The Kirchhoffean assumption is postulated and the investigation is limited to
small deformations. For illustrative purposes, the incremental theory of plasticity with von Mises yield condition
and the associated flow rule are adopted, and work hardening is assumed to be isotropic. This is not an inherent
limitation of the method, as any plasticity hardening law can be used. The finite element approach using the
direct stiffness method of matrix analysis of structures is employed to achieve the solution. The plate is divided
into a number of annular elements which are further subdivided into several layers along their depths. Loads
are applied in small finite increments. For each increment of loading, material properties are assigned to each layer
of all annular elements and the stiffness matrix of the plate is computed accordingly. The variation of material
properties within each increment of external load is considered. An example of a uniformly loaded clamped
plate is given.

NOTATION
e deviatoric strain tensor
& strain tensor
el elastic components of strain tensor
ef plastic components of strain tensor
& principal strain components
E modulus of elasticity
E, tangent modulus in uniaxial test
Ej; elastic—plastic modulus
f yield function or loading function
h plate thickness
hy distance of kth layer from the reference plane
H function of equivalent plastic strain
K,, K, radial and tangential curvatures

M,, M, radial and tangential moments per unit length

n number of layers
p(r) transverse load per unit area
Q radial transverse shear per unit length
1,0,z coordinate axes taken in the plate, z is measured positive downward from the reference plane
T stress tensor
T principal stress components
w slope
w deflection

INTRODUCTION

THE problem of bending analysis of axisymmetrically loaded and supported circular
plates made of hardening material has been studied in the past. Solutions based on both
the deformation and the flow theory of plasticity have been reported by the investigators.
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The early attempt was made by Sokolovsky [1] who used deformation theory of plasticity
in the bending analysis of circular plates. The rigid-work hardening model together with
piecewise linear yield conditions has been utilized in the solution of circular plates prob-
lems [2, 3]. The case of plates under uniform [2] and concentrated load [4] has been analyzed
for material obeying Tresca yield condition. Mises yield condition has been linearized for
the solution of plate problems [5, 6]. In addition to solid plates, the case of annular plate
was treated in [7, 8]. The use of numerical integration to handle the bending of circular
plates made of rigid-isotropic hardening material is demonstrated in {9, 10] and for rota-
tional shell made of elastic-isotropic hardening in (11]. In the latter paper Marcel and
Pilgrim used a step-by-step predictor—corrector approach and exhibited the propagation
of the plastic region in a torispherical pressure vessel head. An incremental analysis of
circular plates for Reuss—Mises stress—strain relationships was presented by Lackman [12].
In the paper an example for a uniformly loaded simply supported circular plate is
given.

In this paper a perfectly general method of bending analysis of circular plates with
axisymmetrical loading and support conditions is presented. The proposed procedure is
applicable for any inelastic response but is limited to small deflections. In the proposed
method of analysis any type of hardening material can be specified. For the purpose of
illustration, however, incremental law of plasticity for isotropic hardening material obeying
the von Mises yield condition has been selected. This paper is an extension of an earlier
work [13] on circular plates of elastic perfectly plastic material.

FORMULATION OF THE PROBLEM

The general finite element approach using the stiffness method of matrix analysis of
structures for circular plates has been presented previously [13]. This leads to the following
equilibrium and strain displacement relations which are also applicable to the case under
consideration here.

d’AM dAM, dAM,,
' = 1
dr2 r( dr d )+A (r) 0 ( )
d?Aw
{Aa,} {AK } {AK,} dr? "
Ae) lAK, AK,)  |1dAw
rodr

where

AM,, AM, respectively are the increments of radial and tangential moments per unit
length, and Ap(r) is the increment of applied load per unit area, see Fig. 1.

Ag,, Agg are radial and tangential strain increments.

AK,, AK, are increments of curvature of middle plane, and Aw is increment of trans-
verse deflection.

The plate is divided into a number of annular elements which are further subdivided
into several layers of equal thickness symmetrically arranged with respect to middle plane
see Fig. 2. The material properties are assigned to each layer from the knowledge of load
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Fi1G. 2. Arrangement of layers along the depth of the plate.

history and on this basis the expression for {AM} can be formulated as follows:

n hy
(AM} =2 % j [E9]{Ae} 2 dz 3)
k=1Jhe_y
or
{AM’} AM D]{AK 3
AM,,—{ } = —[D{AK} (3a)
where
3 n
2[1)3]2 = o k; [E"™M(3k?—3k+1) 4)
Dll D12
D] = : D,=D 5
[D] [D“ DZJ 21 (5)
and

E® is the elastic—plastic modulus of kth layer, whose expression is developed in the
next section.

Substitution of (3) into (1) leads to the following governing differential equation

Awii_%Awi) = Ap(r)

11

2
Aw'Y + gAwiii — (é)
r r

(6)
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where

A2=22—2
Dll

and superscripts denote differentiation with respect to r. The homogenous solution of
(6) depends on parameter A.
(@) for A =1

Aw = a;+ar*+asInr+a,;Inr 1)
(b) for A # 1. A#0

Aw = arttrrart A ragrt4a, 8)

The case A = 0 is not encountered in this problem.
The homogenous solutions (7) and (8) are employed to establish the stiffness matrix
of each element.

{AS} = [k] {Av}
4x1 4x4 4xl ©)

where
{AS} and {Av} denote the increments of nodal ring forces and corresponding nodal

ring displacements respectively, see Fig. 3.
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F1G. 3. Forces and displacements of a ring element.

[k] is the element stiffness matrix which is given in the Appendix for the case when
A#1LA#O.

Both tributary area approach and consistent equivalent nodal ring load method [14]
have been employed to convert the transverse distributed load to nodal ring loads. Com-
parison of the results using these approaches indicates little difference. This is partly
because of the small width of the elements used in the analysis for the purpose of assigning
the material properties in each layer. The expressions for consistent equivalent nodal ring
forces are given in [15].

The stiffness matrix of the whole plate is assembled by employing the direct stiffness
method of matrix analysis of structures.
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CONSTITUTIVE EQUATIONS

The main purpose of this paper is to apply the general method presented above to
hardening materials whose constitutive law may be obtained either theoretically or
experimentally. For the purpose of illustration a possible constitutive relation is presented
in this section which can be used in the solution of plate problems.

The material is assumed to be time independent and initially free from residual stresses.
The strain increments for small deformation can be written

where E and P respectively designate the elastic and plastic components of the strain

tensor ¢;;.
The elastic component of strain increment is related to stress increment through
generalized Hooke’s Law which for isotropic materials can be written as

dsﬁ = l—zzdfij—%dtkkéij (11)

In order to establish the relations between the plastic components of strain and the
state of stress, the existence of the plastic potential and the validity of the normality rule
at a regular point on the yield surface are assumed. Thus

de = def, = i 12)

0ty

where ¢;; is the deviatoric strain tensor, dA is a non-negative function which may depend
on stress, stress increment, strain and history of loading, and

f(Tkk,sfx,K) =0 (13)

is the yield condition in which « is a work hardening parameter.

YIELD SURFACE
Tn

;/SUBSEOUENT
/

INITIAL YIELD
SURFACE

(¢) YIELD CORNER {d} PIECEWISE LINEAR
Y!1ELD CONDITION

F1G. 4. Hardening rules.

Several hardening rules have been proposed to take into account the change in size
and shape of the yield surface during plastic deformation. Isotropic hardening, see Fig. 4(a),
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which at progressively higher stresses exhibits uniform expansion of the initial yield surface,
is the most widely used law to describe hardening. This rule, however, does not account for
Bauschinger effect. To include this effect, the “kinematic hardening” rule was suggested
by Prager [16], see Fig. 4(b), and was later modified by Ziegler [17]. Further suggestions
such as piecewise linear yield conditions, which accommodate both translation and expan-
sion of the yield surface, Fig. 4(d), and the concept of yield corner stating that the yield
surface changes only locally, Fig. 4(c), have also been advanced Numerous tests have been
conducted to check these theories. The results are contradictory and no definite conclusions
have been reached so far. In this paper isotropic hardening rule was adopted aithough
any other rule of plastic flow can be used.

To express the measure of hardening «, two schemes are frequently used [18]. The first
approach suggests that the degree of hardening is a function only of total plastic work

k = k(W,), W, :JTU def; (14)
The second approach defines x as

K=K jdé” ), d&® = (/$)(def; def)* (15)
As pointed out by Hill [18], the above two concepts are equivalent for materials obeying
von Mises yield condition.

Adopting the Mises yield condition and the stated assumptions, expression (13) can be
stated as

f=6-HE"H=0 (16)
where
7 = (D)t = /(3J2)
and
& = de?
path
in which

J, is the second invariant of deviatoric stress tensor

s;; the deviatoric stress tensor

¢ the effective stress, and

H a function of equivalent plastic strain

Combining equations (11), (15) and (16) we obtain the basic relation for the plastic
strain increment

1 d6 06 |
95 = B B, 5,
or
P_3_1_ Sijsk,

dei: = =
Y 2 H SpuSum

dty (17)

where H' = dé&/de" is the slope of the G—&° curve.
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If the data for uniaxial tension test are used to define H’, it can be shown that

i 1 1
= 1
H E E (18)

where E, is the tangent modulus, and E the Young’s modulus. If data from simple shear test

are used, then
1 1( 1 1 ) (19)
H 3\ p

where g, is the tangent modulus in shear for the —y diagram, and u is the elastic shear
modulus.
For H' to be invariant, the comparison of (18) and (19) leads to the following requirement

3 1“1—2v

E, .“r— E

(20)

Expression (20) imposes a restriction on E, and y,, which generally does not hold true for
all materials.

Substituting for def; and def; from (11) and (17) into (10), and considering the uniaxial
tension test as the basis for determining H', we have

deij = Siju dry, (21)
where

1+v v 3
Sijkl— (51k5 +5i15jk)_'E5i16kl+ E El 5 (22)

1 1) ik
Inverting equation (21) and specializing for the case of plane stress, we obtain the

following expressions
dr E,, E de
[ 1} _ [ 11 12:| [ 1:’ (23)
dr, E,, E,, de,

that are defined in the principal directions of stresses and strains and in which

{+(1=0)(5,/5)?

B = B o = 0152 + 2vs15, + 52767
_ _ (I—C)(slsz/az)
Bva = Eay = B (0 ot o s ol &4
. L4 (1L=0)(s,/0)?
22 —

e+ (=017 + 2vs15, +52/67]
where

. . _ 1 . — 1
= E/E; St = T11—2T22; Sy = T2 271y
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Equation (23) is applicable during loading, that is, when

of
E;dr”' > 0. (25)
When unloading takes place,
of
5{; dTij < 0, (26)
Hooke’s law must be used :
dr 1 v de
L)l L) e
dt, L=vily 1 de,

Expressions (25) and (26) are checked at each layer for each increment of load and the
computer has the command to take the appropriate constitutive relations (24) or (27).
In this manner reloading after any unloading is accommodated.

It should be noted that as E, approaches zero, the components of E;; given by (24)
approach the values for an elastic perfectly plastic material described previously [13].

NUMERICAL EXAMPLE

The numerical analysis of the problems has been carried out by an IBM 7090-7094
digital computer using Fortran IV language.

The behavior of a clamped plate, Fig. 5, subjected to uniformly distributed load was
analyzed. The assumed uniaxial stress—strain diagram of the plate material is shown in
Fig. 6. Poisson’s ratio was assumed to be v = 0-33. The plate was divided into 18 elements
which were arranged as indicated in Fig. 5. For the purpose of the analysis the thickness of
the plate was divided into 40 layers. After inelasticity sets in, load increments of 15 and 10
psi were used.

;-

L 0in 10@ 05in | (6@ osin]
44 T %
10in 4 T 2
T 14

t

F1G. 5. Finite element idealization of the clamped plate.

The results of analysis are plotted in Figs. 7, 8,9, and 10. The effect of inelastic behavior
is evident from the presence of residual deflection after the removal of 560 psi load, see Fig.
7. Noticing the distribution of the residual moments from Figs. 8 and 9, the tendency for
the redistribution of moments can be observed. In the example considered this is not of
appreciable magnitude. The amount of residual moment depends on the hardening rate of
the material. The pattern of redistribution of moments is similar to the results found
previously for elastic—perfectly plastic material [13]. Since in the present method of analysis
the variation and degree of inelasticity within each layer of an element is not distinguished,
the calculated elastic—plastic boundaries consist of a series of small steps. These have been
approximated by the curves shown in Fig. 10.
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F1G. 10. Elastic-plastic boundaries.

The solid curve in Fig. 6 shows the original input uniaxial stress—strain diagram which
has been used as the curve for the effective stress—strain relations. The small circles show
the effective stress—strain relationship which is obtained from the stresses and strains in the
plate. The coincidence of these two is a good indication of the rate of convergence of the
solution.

A numerical difficulty was encountered at the initiation of plastic deformation in an
element, that is when the value of A is close to unity. This causes an ill-conditioning of [k]
matrix. To overcome this difficulty two procedures were employed. The first made use of a
series expansion in terms of (1 —A) and the factor (1 — A)/(1 — A) causing ill-conditioning
was removed. The second made use of a double precision field which retains 16 decimal
digits. It was found that the second approach was superior to the first one, partly because
of series truncation and the more involved formulas used in the first approach.

The execution time of the program depends mostly on the number of elements in the
plate and the number of load increments. The number of layers in the elements does not
affect the time consumption appreciably. For a plate with 16 elements and 40 layers about
12 sec are used for the execution of each load increment.

CONCLUSIONS

A general method of elastic plastic bending analysis of axisymmetrically loaded and
supported circular plates has been presented in this paper. The method has a great potential
for applications to axisymmetrical shell problems. The extension of this approach to shells
of revolution is in progress.

In addition to the example presented in this paper, additional cases have been analyzed
[15]. It was found that the sensitivity to the magnitude of load increments increases as the
rate of hardening decreases, but that in general the results are not unduly sensitive to the
magnitude of load increments. In this sense the results indicate a high degree of convergence
of the solution.
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APPENDIX

Elements of matrix [k] for a ring element when A # 1, A # Oare as follows:

{aS} = [k] {Av}
4x1 4x4 4x1

2D11 Al
kyy = ,ﬁ(l_AZ) [(ri) _(r_j) :l

= { 1+A 1-A
ku:zD“u—Al)(l—A)(?) —(1+A)(§) +2A

Fi J J .
k13 = _kn
B 1+A 1~
ko =220 A2 (1—A)(’—f) —(1+A)(Q)
rirp L r; T
k21 = k12

oS mfocafl )]

i I—A:I}_D11+D12
. r;

k23 = _k21
1-A 1+A 2
Sy focafly 1o

+u+A>[(%:)“—(%f)‘”+(’—z)2—IJ}

ks —( )kn
J
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r:
ks, =| 2k
(2
k33 = _k31

T

k34 = —r“j 14
kay = —k3q

r;
koo =3
42 (rj)k“
k 3= k34

D,,+D,, D 1+a
k44=_”___£+ 11( A)z{(l— )[(rj)

T rip

el

rj 1+A ri 1+A172 rj
ﬁ=“"”2[(r7 ‘(r:) ] “‘*A’[(a
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where

1-A

r")l—A:lz
T

Résaumé—Une analyse générale de la flexion de plaques circulaires de matériau en cours de durcissement a charge
et support symétriques 4 I’axe est présentée dans cet exposé. Ceci est un prolongement d’une oeuvre précédente
des auteurs [13] sur ’analyse de plaques circulaires élastiques plastiques. La supposition de Kirchhoff est postulée
et I’enquéte se limite aux petites déformations. Dans un but d’illustration, la théorie d’accroissement de plasticité
avecla condition de von Mises 4 la limite d’¢élasticité et la régle d’écoulement associée sone adoptées, et 'écrouissage
est supposé étre isotrope. Ceci ne présente pas une limite 4 la méthode, étant donné que n’importe quelle loi sur
le durcissement plastique peut étre utilisée. Le rapprochement par 1’élément limité en utilisant la méthode directe
de rigidité par I’analyse des matrices des structures est employée pour obtenir la solution. La plaque est divisée
en un certain nombre d’éléments annulaires qui sont de plus divisés en plusieurs couches le long de leurs pro-
fondeurs. Des charges sont appliquées par petits accroissements limités. Pour chaque accroissement de charge,
des qualités de matériau sont assignées A chaque couche de tous les éléments annulaires et la matrice de rigidité
de la plaque est calculée en conséquence. La variation des qualités de matériau au cours de chaque accroissement
de la charge extérieure est considérée. Un exemple de plaque serrée a charge uniforme est donné.

Zusammenfassung—Eine allgemeine Biegungsanalyse axialsymmetrisch belasteter und gestiitzter runder Platten
aus gehirtetem Material wird in dieser Arbeit gegeben. Dies ist eine Erweiterung einer frilheren Arbeit de
Authoren [13] iiber die Analyse elastoplastischer runder Platten. Die Kirchhoff’sche Voraussetzung wird
angenommen und die Untersuchung ist auf kleine Verformungen beschrinkt. Zur Illustration werden die
Zuwachstheorie der Plastizitéit mit der von Mises’schen Bedingung und die damit verbunderne Fliessregel ange-
wandt und die Verfestigung wird als anisotropisch vorausgesetzt. Dies ist keine Eigenbeschrinkung der Methode
da jedes Hirtungsgesetz angewandt werden kann. Zur Losung wird das endliche Element mit der direkten
Steifigkeitsmethode der strukturellen Matritzenanalyse angewandt. Die Platte wird in Ringe aufgeteilt, die
weiter in verschiedene Lagen, der Tiefe nach, geteilt werden. Die Belastung wird in kleinen endlichen Zunahmen
aufgebracht. Fiir jede Belastungszunahme werden fiir jede Lage jedes Teiles Materialeigenschaften bestimmt,
und die Steifigkeitsmatritze wird entsprechend errechnet. Die Verschiedenheiten der Materialeigenschaften fiir
die gegebenen Belastungszunahmen werden untersucht. Als Beispiel wird eine gleichmissig belastete gespannte
Platte gegeben.
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Abcrpakt—B paGore npeacrasies ofmmit pacyer m3rHba OCECMMETPHYHO HATPYXEHHOH M ONEpTOi
Kpyriiol IUIACTHHKH W3 Martepuana ¢ ymnpouHenHeM. PaboTa sBnseTcs NPONOIDKEHHEM Tpeblayilei
pabotet aBTOpoB [13], xacaromelics pacyera yNpyro-njacTWYHBIX Kpyribix nnactunok. [lpunuMaercs
nonymenne Kupxrodda. Hccnemosanus orpanwdensi ManbiMe nedopMmaitusmu. JIna wimocTpauuy
NPHHATA TEODHS IUIACTHHECKOTC TEYEHHA C YCIOBHEM TeKyYeCTH Mu3seca H acCOLMMPOBAHHBIM 33KOHOM
Teyenus. YOPOYHEHHME NPEIIAraeTcs HM30TPOMHBIM, ODTO HE SBIAACTCA CYLIECTBEHHBIM OFPaHHYCHHEM
METOJA, TAK KaK MOXeT OBITh MCHOJBL30BaH MoO0# 3aKOH IIACTHYECKOro YNPOYHEHMs. 3ajava pelueHa
METOIOM KOHEMHBIX 3JIEMEHTOB IIPH HCTIONTB30BAHHH NPAMOI0 METOAA MATPHYHOTO HCUKCIIEHHS , M3BECTHOTO
M3 CTPOMTENBHOK MEXaHHKM, IUTs MPEACTAaBIeHUA Ko3h¢UIUHEHTOB XecTKoCTH. Tlnacrunka pasznenena na
HEKOTOPbIE YHCIO KOMBLEBBIX MEMEHTOB, KOTOBbIE NaJiee NOAPA3AEIIEHEI HA HECKONBKO CIIOEB 110 TOJILHHE,
[lpunaracMas Harpyska YeJIHUMBACTCH MAallbIMH KOHEUHBIMH OpupainenusMu. IIpu xaxzom npupamesuy
HArpy3KH ONeaesneHs! CBOMCTBA MATEPHaa KaX0To CIIOf BO BCEX KOJNBLEBIX JIEMEHTAX H COOTBETCTBCHHO
PACYMTAHA MATPHLA KODIUUMEHTOR XKeCTKOCTH mnacTuHky. Viccnenyercs u3MeHeHue CBONCTE MaTepuana
IS KaXAOro npHpalleHns BHeluHel Harpy3ku. [IpusonuTcsa npumep pacyeTa paBHOMEPHO HATPYXKEHHOH,
3aeNIaHON IUTACTHHKU,



